Stereotomy Phase 3

(work from 01.2017_05.2017)

After the Chartres vault phase, Jim and I started working on separate portions of creating a vault. Jim was experimenting with forms in Kangaroo 2 and I was developing a manual trait process for a vault defined by site constraints of a specific spot in the makeLab. My process focused on finding the blocks manually with 2D drawings in Rhino, and Jim’s process focused on creating an overall form through Kangaroo and Grasshopper. Now looking back on those separate processes that started in February 2017, Jim and I have since realized that we conducted that phase of the research backwards – with me doing block finding manually and Jim doing form finding through automation.

View from left of the finished trait in a parametric workspace

However, this trait led us to conversations about the cross section of a vault. For the manual trait, I set up a framework of compressive parabolic boundaries in Rhino: 3 parabolic curves stretched to the ends of the site constraints, and then tilted up to form a 3D outline of a vault. A plan was given based on precedent.

Boundaries in plan before parabolic curves are tilted 90 degrees

From there, a trait was developed that was heavily reliant on visualization. Because we created the trait in a parametric workspace instead of a 2D one (on paper) but we were still only using lines (rotated, projected and folded), we were able to see the process unfold – a system of instant assurance that we had made the right move mid-step: an advantage that the 12th century masons and architects didn’t have. That advantage was unique to our process – the advantage of visualization. Utilizing parametrics to manually solve a method that is only comprised of 2D drawings was a hybrid system of traditional knowledge and modern tools.

3D view of the trait with 3 of its 6 orthographic projections. At this stage, we had found 5 of the 15 blocks.

In the terms of it structurally staying together, we speculated that as long as the panel of blocks stayed within the “thrust line” of its boundaries, the vault would stay together. And because a vault does not technically have just one thrust line – in reference to Philippe Block’s dissertation: “Thrust Network Analysis: a method for understanding three-dimensional funicular systems”- we had wanted to test its structure through making instead of through digital analysis since the structure was so small and virtually risk free.

Finished vault in the site it was designed for.

Leave a Reply

Your email address will not be published. Required fields are marked *