Tools That Stay

setup

It was only a couple of years ago when we built our first suitcase CNC and took it to Albania.  Since then, we have shifted our focus to tools that stay, as apposed to tools that travel.  Our second CNC machine is now in Kosovo with a third installed in January at Sushant School of Art and Architecture in New Delhi, India.  As our focus shifted so did the technology.  The first suitcase CNC was built for the rigors of travel.  It was in a hard roadie case and required almost no setup.  This allowed for minimal time as we moved from workshops to demonstrations in multiple locations.  When tools stay the requirements change but the idea of maintaining the tool becomes the challenge.  We shifted the design from one that was nearly fully custom to one that was almost entirely open-source.  CNC tools were installed this summer in Bolivia with the International Design Clinic (IDC) and in Albania at Polis University using the ShapeOKO design with the new tinyG control board.  The tools are now able to be maintained by the host institutions with the advantage of open-source knowledge and components.  We benefited immediately in Albania from this support community.  The tinyG control board, the hardware and the control software had communication issues.  After a couple of days of troubleshooting the tinyG forums assisted the makeLab and the students at Polis University in Albania in resolving what was only a minor firmware issue.  This first hiccup was the perfect test for a support network that is necessary in emerging regions that do not have the “benefit” of a service contract for digital equipment.

working

The ShapeOKO was modified this year to use a larger router for cutting dense material and with larger aluminum rails to increase cutting size.  Both tools also have the advantage of upgrade.  With the evolving open-source design, students and faculty can update components cost effectively as the technology changes.

After troubleshooting, the tool ran smoothly in Albania with the students able to produce projects within the first few days.  Four student projects explored different avenues of digital fabrication.  One project studied material performance through removing “lines” of material and heat bending extruded PVC along a digitally cut “jig”.  Others saw potential in surfacing material that would interact with the landscape, creating a connection between soil, plants and geometry.  Joint taxonomy and transparency were also explored leveraging the tools ability to cut precisely when needed but allowing for improvisation in the final form.

We look forward to 2015 when we can install more digital tools!

 

Final_Surface_Page_13Final_Surface_Page_16Final_Surface_Page_19joints2

Leave a Reply

Your email address will not be published. Required fields are marked *